
Stem cell recruitment after injury: lessons for regenerative
medicine

Robert C Rennert1, Michael Sorkin1, Ravi K Garg1, and Geoffrey C Gurtner1,*

1Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive
Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive
West, Hagey Building GK-201, Stanford, CA 94305-5148, USA

Abstract
Tissue repair and regeneration are thought to involve resident cell proliferation as well as the
selective recruitment of circulating stem and progenitor cell populations through complex
signaling cascades. Many of these recruited cells originate from the bone marrow, and specific
subpopulations of bone marrow cells have been isolated and used to augment adult tissue
regeneration in preclinical models. Clinical studies of cell-based therapies have reported mixed
results, however, and a variety of approaches to enhance the regenerative capacity of stem cell
therapies are being developed based on emerging insights into the mechanisms of progenitor cell
biology and recruitment following injury. This article discusses the function and mechanisms of
recruitment of important bone marrow-derived stem and progenitor cell populations following
injury, as well as the emerging therapeutic applications targeting these cells.
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Tissue repair and regeneration following injury demand the precise orchestration of complex
signaling cascades to coordinate growth of spatially proximate, but physiologically distinct
structures. While this process is facilitated in many cases by proliferation, migration and
differentiation of local progenitor cells, the selective recruitment of bone marrow-derived
stem and progenitor cells (herein referred to as bone marrow stem cells) is also thought to
play a role.

The bone marrow acts as a reservoir for multiple stem cell populations, including
hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor
cells (EPCs) and very small embryonic-like cells (VSELs), which are mobilized at varying
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degrees into the peripheral circulation following injury [1–3]. Subsets of these cells have
also demonstrated the ability to home from the circulation to a variety of experimentally
injured tissues, including muscle, heart, kidney, skin, bone, liver and brain [1,3–10], where
they are thought to variably contribute to tissue repair and regeneration through paracrine
effects and inconsistent levels of direct differentiation [1,3,11,12].

Despite this endogenous stem cell recruitment, the inability of most adult tissue to
regenerate following injury suggests that these mechanisms are easily overwhelmed.
Therapies attempting to augment bone marrow stem cell involvement following insult have
therefore been developed, and have shown the ability to mitigate injury and enhance the
regenerative capacity of adult tissue in a variety of preclinical models [8,13–20]. Effective
clinical translation of these techniques, however, has thus far lagged behind [21–23]. Poor
cellular retention within the harsh injury environment, as well as the use of incompletely
defined or heterogeneous cellular populations are potential limiting factors to the clinical
success of stem cell therapies [21,24], which has led to ongoing studies attempting to better
understand the underlying biology of stem cell recruitment, as well as to identify methods to
augment stem cell survival, signaling and function.

This article discusses the role of four of the most studied bone marrow-derived stem cell
populations, HSCs, MSCs, EPCs and VSELs, in endogenous and experimental tissue repair
and regeneration (Figure 1). We will define these populations, explore their molecular
mechanisms of mobilization and homing, identify their role within the injury
microenvironement and discuss experimental methodologies to enhance their number,
function and therapeutic potential.

Hematopoietic stem cells
HSCs are self-renewing, multipotent bone marrow cells that are responsible for replenishing
all cellular components of the blood, including leukocytes, erythrocytes and platelets. HSCs
are relatively rare, comprising approximately 0.01–0.15% of nucleated bone marrow cells
[1,25], and can be further characterized based on their capacity for sustained bone marrow
reconstitution (long- versus short-term HSCs). HSCs are typically isolated based on surface
antigen expression, and although these profiles are constantly evolving, commonly used
definitions include lack of lineage-specific markers and positivity for CD45, c-kit and/or
Sca-1 (murine), or CD34 and CD133 (human) [4,26]. Combinations of cell surface receptors
from the SLAM family, including CD150, CD244 and CD48, have also been used for
simplified murine HSC isolation and identification within tissue sections [27], but are not
equally expressed in humans [28].

Clinically, HSCs have been shown to mobilize from the bone marrow into the circulation
following a variety of injuries, including myocardial infarction [29], stroke [30], liver injury
[31] and skin burns [32], although their contribution to tissue repair and regeneration is
uncertain. It was initially thought, based on early preclinical studies, that HSCs could help
repopulate injured tissue through direct differentiation [33,34]; however, the strongest
current evidence for HSC plasticity is limited to rare differentiation events within the
mesodermal lineage [4]. In fact, work from our laboratory showed that HSC recruitment and
engraftment within murine ischemic tissue was minor compared to changes in bone marrow-
derived MSCs (BM-MSCs) [1], casting doubt on the importance of endogenous HSCs
within the wound environment.

Nonetheless, delivery of exogenous HSCs may still be therapeutic, as both systemic and
local injection of HSCs has been shown to ameliorate experimentally induced injuries via
hematopoietic lineage (myeloid) restricted differentiation and cytokine effects [12,35].
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Endothelial progenitor cells
EPCs are rare circulating cells that have the ability to incorporate into foci of
neovascularization. The mechanistic contribution of these cells to de novo postnatal
neovascular formation is termed vasculogenesis, and represents a paradigm shift in adult
vascular biology, as neovascularization was previously thought to occur through a strictly
angiogenic mechanism, (whereby pre-existing endothelial cells undergo in situ proliferation
and migration to form new blood vessels) [36]. First described in 1997[37], the definition of
EPCs has evolved alongside new discoveries of their lineage, resulting in two proposed
subpopulations (hematopoietic and non-hematopoietic EPCs) with distinct surface marker
and functional characteristics [36].

Hematopoietic EPCs (including the alternatively described early EPC and circulating
angiogenic cell populations) [38,39] may represent a vasculogenic subpopulation of bone
marrow-derived HSCs [36]. While a unifying cell surface antigen profile does not exist,
these cells are often described as CD34 (human) or c-kit/Sca-1 (mouse) positive, with co-
expression of endothelial cell markers (CD31, vWF, VEGFR2), hematopoietic lineage
markers (CD45) and inconsistent expression of monocyte markers (CD14 and CD163) [39–
42]. Hematopoietic EPCs secrete high levels of cytokines, including VEGF, IL-8, HGF and
G-CSF, and are thought to contribute to vascular repair mainly through paracrine
mechanisms [39,41], but subsets of these cells have shown the ability to directly incorporate
into the endothelium [43,44].

By contrast, non-hematopoietic EPCs (including late outgrowth cells and outgrowth
endothelial cells, or EOCs) do not express CD45 or monocyte markers, and show a surface
marker profile more closely resembling mature endothelial cells [39–41]. Non-hematopoetic
EPCs exhibit low levels of cytokine production and are thought to contribute to vascular
repair mainly through the direct formation of vessels [41]. The origin of non-hematopoetic
EPCs remains unclear, but it is speculated that they derive from organ blood vessels or non-
hematopoietic bone marrow cells [36].

While subpopulation delineations are often not made, it is assumed that EPCs are mobilized
in response to ischemic injury [29,45], and contribute to neovascularization in small animal
models through a combination of direct cellular differentiation and indirect production of
cytokines and growth factors (VEGF, SDF-1, and IGF-1) to promote the migration of
mature endothelial cells and resident progenitor cells [3,46]. The critical role of EPCs is
suggested by their dysfunction and reduced levels in clinical disease states associated with
poor wound healing, such as diabetes [47,48], and the observation that EPC transplantation
can ameliorate injury and improve functional outcomes in models of stroke [13], myocardial
infarction [14] and acute liver and lung injury [15,16].

Mesenchymal stem cells
MSCs are multipotent, non-hematopoietic stromal cells that can be isolated from various
adult organs and tissues, including bone marrow [49], adipose tissue [50], peripheral blood
[51], lung [52], brain [52] and skeletal muscle [53]. MSCs are thought to reside in a
perivascular niche in vivo [52,54], and are capable of differentiating into various
mesenchymal lineages in vitro, including bone, muscle, cartilage and fat [49], as well as
forming cells from other germ layers, such as keratinocytes and neuron-like cells [55,56].
While there is no universally accepted definition, and surface antigen expression can vary by
source tissue, a list of potential criteria for human BM-MSCs includes: plastic adherence
under standard culture conditions; positive expression of CD105, CD73 and CD90, with
absence of lineage-specific markers and CD34; and in vitro differentiation capacity to form
osteoblasts, adipocytes and chondroblasts [57]. Murine BM-MSCs share these functional
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characteristics, but are often isolated based on positive expression of Sca-1 and/or PDGFRα,
with negative expression of hematopoietic or mature cellular markers [1,58].

BM-MSCs comprise approximately 0.001–0.08% of cells within the bone marrow [1,49],
and have been shown to mobilize to the peripheral circulation following experimental injury
[1,11]. Mobilized BM-MSCs home to sites of injury [1,11], where they are thought to
contribute to tissue repair and regeneration mainly through paracrine support of injured cells
(HGF, EGF, VEGF, sFRP-4) [59,60] and regulation of extracellular matrix remodeling
[59,61,62], immune response (IL-1 antagonism, IL-10) [63,64] and local progenitor cell
proliferation and differentiation [65]. Like EPCs, BM-MSCs are also thought to contribute
to the restoration of vascular integrity and neovascularization following injury, as seen by
their incorporation into almost 25% of new blood vessel endothelium in ischemic murine
skin [1], as well as their ability to upregulate expression of pro-angiogenic factors, such as
FGF, in response to environmental cues [66]. BM-MSCs have also been reported to undergo
direct cellular differentiation and/or fusion to form a variety of other cell types following in
vivo experimental injury, including myocardiocytes [67], kidney mesangial cells [68],
osteoblasts [7], skeletal muscle cells [69] and neuron-like cells [5]; however, these events
are rare, and likely less important than the aforementioned mechanisms of action.

The likely multifactorial role of BM-MSCs within the injury environment makes them
especially appealing for cell-based therapies, as illustrated by their ability to support
neovascularization, increase efficiency of cardiomyocyte mitochondrial oxidative
phosphorylation and improve overall cardiac function in models of cardiac ischemia [67,70].
Further highlighting their therapeutic potential, transplantation of BM-MSCs has been
shown to ameliorate experimental injury in almost all major organs, including the brain [17],
liver [8], kidney [6] and lungs [19], and can even promote immune tolerance in tissue
transplant models via cytokine activation of Tregs [71,72]. Given these diverse beneficial
effects in preclinical models, an explosion of clinical trials involving BM-MSCs is currently
underway to further evaluate these cells.

Very small embryonic-like cells
VSELs are a population of developmentally primitive pluripotent stem cells found in bone
marrow and other adult organs [73–75]. These cells share several features typical for
embryonic stem cells, including small size, a large nucleus surrounded by a narrow
cytoplasmic rim, open-type chromatin and the ability to differentiate into all three germ
layers [73]. VSELs comprise approximately 0.006% of all murine bone marrow cells [74],
and are typically identified as being lineage- and CD45-negative, and CXCR4, Sca-1
(mouse), CD133 (human) and CD34 (human) positive [74,75]. Additionally, VSELs exhibit
positive expression of pluripotency (Oct-4, SSEA-1) [73] and epiblast/germ line stem cell
markers [76].

VSELs are hypothesized to be deposited in developing tissues and organs during early
gastrulation, and play a role in the repopulation of more tissue specific stem cells under
homeostatic conditions [77]. VSELs are also likely involved in tissue regeneration following
injury, as they are mobilized into the peripheral circulation following both experimental
insult and clinical cases of cardiac ischemia and stroke [2,30,78], and can improve cardiac
function when delivered locally following induced myocardial infarction [20]. While a small
proportion of VSELs may undergo direct cellular differentiation within the injury
environment [20], their low long-term engraftment rate indicates the main beneficial effect
of these cells is more likely due to paracrine mechanisms.

Rennert et al. Page 4

Regen Med. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mechanisms of bone marrow stem cell recruitment following injury
A complex signaling network likely underlies the selective recruitment of the
aforementioned bone marrow stem cell populations following injury, which is best described
for HSCs [79], but may be similar in other cell types [80,81]. Important steps in this process
include cellular mobilization from the bone marrow into the circulation, homing to the
injury site, vascular rolling and adhesion, endothelial transmigration and, finally, movement
within the extracellular space to the injury site. Interactions of the cytokine SDF-1 with its
receptor (CXCR-4) on bone marrow cells is one of the more well-described mechanisms
underlying cellular mobilization and homing [82,83]; however, a variety of other molecules
have been shown to affect each step of the recruitment process [12,84–87].

Cellular mobilization & homing
Under physiologic conditions, bone marrow stem cells are thought to be maintained within
their niche through tightly controlled interactions of chemokines, cytokines and growth
factors with cellular receptors, as well as through the presence of specific adhesion and
extracellular matrix molecules [80,88]. Following injury, there is evidence that cytokine
release by vascular endothelium and activated platelets, combined with local upregulation of
growth factors, alters this homeostasis by providing a signal gradient for bone marrow stem
cell mobilization and homing [89–91]. SDF-1 and other molecules implicated in this process
are discussed below.

SDF-1—The cytokine SDF-1 is thought to play an important role in stem cell maintenance
within the bone marrow, as well as cell mobilization and release following injury. SDF-1 is
regulated in part by the transcription factor HIF-1α [89], and during homeostasis, SDF-1 is
upregulated within discrete regions of hypoxia in the bone marrow, promoting stem cell
tropism through interactions with its cellular receptor CXCR4 [83], and likely downstream
modulation of adhesion molecule expression, cell proliferation and cell survival [92–94].
Following insult, SDF-1 is released by hypoxic endothelium and activated platelets at the
injury site, creating a chemokine gradient that is thought to promote CXCR4-mediated bone
marrow stem cell mobilization and recruitment [83,89,90]. Demonstrating the importance of
this pathway, antibody blockade of SDF-1 in ischemic tissue, or CXCR4 on circulating
cells, severely limits EPC recruitment to sites of experimental injury [83], and augmentation
of SDF-1 expression in ischemic tissue models enhances HSC and EPC recruitment [84,95].
While the SDF-1/CXCR4 pathway is best described for HSCs and EPCs, it is also likely
involved in the mobilization and recruitment BM-MSCs and VSELs, as both of these
populations express CXCR4 [73,94].

Despite its demonstrated importance, the exact mechanism by which SDF-1 causes both
tropism and mobilization of bone marrow stem cells is incompletely understood. There is
evidence, however, that circulating SDF-1, as seen following injury, promotes cell
mobilization from the bone marrow through CXCR4 receptor desensitization [83], as well as
stromal cell upregulation of the protease MMP-9 [96]. Following cell mobilization, the
increased binding capacity of immobilized SDF-1 found on or around ischemic blood
vessels may then overcome CXCR4 desensitization to promote tissue specific adhesion and
localization [83,97].

Nitric oxide—Nitric oxide (NO) is a gaseous signaling molecule that plays an important
role in homeostatic vascular health. Interestingly, NO may also be involved in SDF-1/
CXCR4-mediated bone marrow stem cell recruitment following injury, as endothelial nitric
oxide synthase (eNOS) has been shown to increase SDF-1 expression through a cGMP-
dependent mechanism in ischemic murine tissue [98], and experimental blockage of eNOS
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inhibits SDF-1-mediated EPC homing [84]. Additionally, eNOS has been shown to play a
crucial role in progenitor cell adhesion to the vascular endothelium through an ICAM-1- and
CXCR4-dependent mechanism [99].

Jagged/Notch interactions—The Notch signaling pathway plays an integral role in
embryonic development, but is also active in many adult processes, including regulation of
stem cell self-renewal, expansion, survival and differentiation [100–102]. Notch1
interactions with its ligand Jagged have also demonstrated importance for murine BM-MSC
and EPC recruitment and therapeutic effect following ischemic injury [85,86], with
knockout models having particularly deleterious effects on neovascularization. While
incompletely understood, the mechanism of this effect is likely due in part to modulation of
CXCR4, as Notch knockout decreases CXCR4 expression in murine BM-MSCs [86], and
Notch-mediated upregulation of CXCR4 has been reported in other bone marrow-derived
cells [103].

MCP-1/CCR2 interactions—MCP-1 is a chemokine that is best know for its ability to
recruit monocytes following injury. However, there is also evidence that MCP-1 contributes
to bone marrow stem cell recruitment, as MCP-1 binding to its receptor CCR2 is required
for efficient BM-MSC homing and engraftment in a murine model of cardiac ischemia [87],
and CCR2 expression is important for mobilized murine HSC trafficking to sites of
inflammation [12]. This pathway is thought to act in part by stimulating chemotaxis through
promotion of asymmetric lamellipodia protrusions [87], but may not be as ubiquitous as the
SDF-1/CXCR4 axis, since CCR2 expression was found to be low in human EPCs [104].

Growth factors—Growth factors, such as VEGF and G-CSF, may also contribute to bone
marrow stem cell mobilization and recruitment following injury, as exogenous
administration of G-CSF and VEGF has been shown to enhance the mobilization of specific
stem cell populations, and promote neovascularization and tissue regeneration within
ischemic or traumatic injury models [105–108]. Mechanistically, G-CSF administration has
been shown to promote murine HSC and EPC mobilization by reducing SDF-1 expression in
the bone marrow, as well as CXCR4 expression on HSCs [106,109]. VEGF, meanwhile, has
been shown to cause divergent effects on murine bone marrow populations based on
receptor profiles, inhibiting HSC mobilization through VEGF receptor 1 (VEGFR1), while
stimulating EPC migration and survival through VEGFR2 [106]. Further supporting an
endogenous cell recruitment role for these factors, VEGF and G-CSF are upregulated
following specific types of human ischemic injuries [91,110], and VEGF is known to play a
crucial role in HIF-1α-induced murine adult neovascularization [111].

Cellular adhesion, endothelial transmigration & extracellular migration
Once mobilized and homed to an area of injury, a variety of molecules have been implicated
in stem cell vascular rolling and adhesion, endothelial transmigration and movement within
the extracellular space. These include selectins (P-selectin, E-selectin) for cell rolling
[112,113], protein/integrin interactions (VCAM-1/VLA-4, ICAM-1/β2 integrin) for
adhesion [112–114], chemokines (CXCL9, CXCL16, CCL20, CCL25) for transendothelial
migration [115] and matrix degrading enzymes/inhibitors (MMP-2, MMP-9, tissue inhibitor
of metalloproteinase-2) for cellular migration within injured tissue [116,117]. Working
together, it is thought that the coordinated expression of this complex molecular network
enables bone marrow stem cells to mobilize and congregate at the original site of injury,
facilitating the cell-specific cytokine and direct contributions previously described.
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Strategies for enhancing stem & progenitor cell involvement following
injury

Despite our growing mechanistic understanding of bone marrow stem cell recruitment, the
reasons behind the relatively limited endogenous cell response following major injury
remain unclear. Regardless of the efficacy seen in small animal models [6,8,12–
17,19,20,35], therapies to enhance stem cell involvement following injury have only had
muted clinical success thus far [21]. While this discrepancy may be partially due to
variations in clinical study design [118], the effects of low cellular retention seen even in
small animal models [119–121] may also be exacerbated by differences in physiology and
stem cell phenotype between largely divergent species [122,123]. In support of this theory, a
meta-analysis of stem cell therapies in large animal models of cardiac ischemia replicated
the modest therapeutic efficacy of clinical trials [124]. This same work, however, provides
potential insights for the improvement of cell-based therapies, as efficacy was increased in
those studies using higher cell doses and more defined populations [124]. In fact, cellular
heterogeneity is becoming increasingly recognized amongst even putatively homogenous
stem cell populations [125,126], making further refinements in cell characterization and
purification important areas of ongoing study.

The limited clinical efficacy of this field has also led to the development of a wide range of
promising preclinical techniques to enhance stem cell function following injury.
Mechanistically, these approaches can be divided into two main categories: enhancement of
the endogenous stem cell response and augmentation of cell-based therapies (Figure 2).

Enhancement of the endogenous stem cell response
Enhancing a patient’s endogenous stem cell response following injury is clinically appealing
due to the elimination of time and costs associated with cell harvest, ex vivo processing and
transplantation. A variety of experimental techniques have shown efficacy in this setting
(Table 1).

Promoting bone marrow stem cell mobilization is a common strategy to augment the cellular
yield of peripheral blood apheresis for clinical stem cell transplants [127], and a similar
approach has been suggested to increase the number of circulating cells available for homing
following injury. In fact, a variety of compounds have shown the ability to mobilize bone
marrow-derived HSCs, MSCs, EPCs and VSELs [2,38,106,128], with differential
mobilization of cellular populations seen depending on the agent [106].

Selected mobilizing agents have been tested for in vivo beneficial effects following
experimental injury, with modulation of the SDF-1/CXCR4 axis being the most common
strategy. As discussed, G-CSF decreases SDF-1 levels in the bone marrow [109], and
systemic administration of G-CSF has been shown to mobilize HSCs, EPCs and BM-MSCs,
and improve outcomes in models of brain, liver and blood vessel injury [5,108,129,130].
Similarly, plerixafor (a CXCR4 antagonist) can act alone or synergistically with G-CSF to
mobilize HSCs and decrease hepatic injury in a rat model of acute liver failure [131]. The
dual role of the SDF-1/CXCR4 axis in bone marrow retention and peripheral recruitment
creates a potential logistical problem with this approach, however, as CXCR4 blockade
presumably forces mobilized cells to rely on alternative homing mechanisms to reach
injured tissue.

Targeting the other side of the SDF-1/CXCR4 axis avoids this problem, as seen with oral
administration of the phosphodiesterase 3 inhibitor cilostazol causing mobilization of EPCs
partly through increased SDF-1 expression at the injury site [132]. Interestingly, cilostazol
also upregulates the expression of CXCR4, integrin αvβ3 and VEGF in EPCs, and
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significantly enhances EPC-mediated inhibition of neointimal formation and acceleration of
re-endothelialization following experimental arterial injury [132]. Similarly, systemic
administration of agents targeting the PI3K–Akt pathway, an important mediator of cell
survival and upstream modifier of eNOS, has been shown to mobilize EPCs and enhance
their in vivo regenerative role [133–135], although the exact mechanism of action requires
further study.

Direct amplification of the cytokine signal within injured tissue is also possible, as local
injection of molecules known to be involved in stem cell homing (SDF-1, E-selectin), has
been shown to enhance bone marrow cell recruitment and beneficial effects following
experimental ischemic and traumatic injuries of the heart, lungs and soft tissue [136–138].
However, the short-term nature of cytokine release following injury is thought to partially
limit the endogenous stem cell response [139], and local injection of quickly degraded
molecules does not address this concern.

Direct- or cell-based gene therapies have therefore been used to provide more sustained
transgene expression at sites of injury, and localized amplification of HIF-1α and SDF-1
gene expression has been shown to enhance bone marrow cell recruitment and improve
neovascularization in ischemic injury models [84,95,140,141]. Safety concerns regarding
viral vector use and regulation of transgene expression at the end of the therapeutic window
may limit the translational potential of in vivo gene therapies, but SDF-1 containing slow
release biologics may provide a more regulated cytokine release at the injury site
[139,142,143], increasing their clinical appeal.

Despite these experimental findings, selective modulation of only one aspect of endogenous
stem cell signaling may not translate to a therapeutic effect in less controlled settings, as
suggested by the disappointing results of clinical trials using stem cell mobilizing agents for
cardiac repair [144]. While experimental models combining local cytokine delivery with
systemic mobilization have shown synergistic effects of combined treatments [137,145–
147], the intrinsic constraints in endogenous stem cell number may limit the efficacy of any
therapy relying solely on native cells.

Enhancement of exogenous stem cell function
The other main experimental approach to augment stem cell involvement following injury is
to bolster cellular engraftment and/or function following transplantation, and a variety of
cellular or injury environment modifications have shown beneficial effects (Table 2).

Similar to studies focusing on endogenous recruitment, enhancement of SDF-1 signaling
within injured tissue can also be used to augment cellular transplantation, as gene therapies,
direct cytokine injection and low-energy shockwave treatments to increase SDF-1
concentration in ischemic injury models have been shown to improve the recruitment and
neovascularization potential of intravenously infused EPCs [148–150].

The ex vivo modulation of cells prior to transplantation is another popular mechanism to
enhance their therapeutic effect, with gene transfer and small-molecule modulation being
commonly used techniques [151]. For example, the ex vivo transduction of BM-MSCs with
genes encoding various kinases and anti-apoptotic proteins (e.g., Akt, Bcl-2, HSP-70, ILK
and GSK-3β) has been found to improve vascularization and functional outcomes following
induced myocardial infarction, likely due to enhanced BM-MSC survival [152–156].
Interestingly, GSK-3β transduction also promoted cardiomyocyte-specific BM-MSC
differentiation and VEGF-independent improvement of cardiac function [153], suggesting
that it may be possible to coordinate overexpression of specific genes with the promotion of
organ-specific tissue regeneration.
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Shifting targets, the genetic or pharmacologic (AVE9488) enhancement of eNOS signaling
in EPCs has also been shown to improve transplanted cell survival and function within
intimal or ischemic injury models [157–159]. While it is unclear if this effect is mediated by
the previously discussed mechanisms, eNOS signaling in both damaged endothelium and
EPCs is clearly important for EPC homing [84,160], making this approach particularly
appealing for use in clinical disease states associated with reduced NO bioavailability, such
as diabetes and coronary artery disease [161,162]. Similarly, the ex vivo transduction or
small-molecule activation of growth factors, cytokines, integrins and cell receptors
important for stem cell recruitment and function, such as of CXCR4, SDF-1, VEGF and
HGF, has been shown to enhance transplanted BM-MSC and EPC homing and paracrine
effects in ischemic or intimal injury models [163–173].

Perhaps not surprisingly, a combination of the aforementioned approaches may be even
more efficacious than singularly focused therapies, as illustrated by the synergistic
beneficial effects of VEGF transduction of EPCs delivered in combination with local SDF-1
injection in a murine model of peripheral ischemia [174]. Tempering the obvious potential
of ex vivo manipulation for enhancing cell-based therapies, however, is the use of clinically
unappealing viral vectors in many of these studies, as well as the presumably short
modulatory effect of small molecules, which would need to be addressed prior to
translational work.

Providing the appropriate environmental cues to delivered cells within the injury site is also
thought to be a crucial aspect of tissue regeneration [175,176], and there has recently been
an increased focus on alterations of the cellular microenvironment to not only enhance stem
cell survival and engraftment, but also modulate cellular proliferation, paracrine activity and
differentiation [177–179].

Bioscaffolds, in particular, are commonly used to control the microenvironment of
exogenously delivered cells. Building upon earlier work suggesting that local delivery of
BM-MSCs within a simple collagen matrix could support cellular engraftment following
experimentally induced cardiac ischemia [180], more sophisticated methodologies have
since utilized external BM-MSC seeding and directed collagen hydrogel contraction to form
3D cell-based constructs capable of augmenting contractile skin wound healing [181].
Additionally, BM-MSC seeding of a variety of scaffolds designed to mimic the
microcomposition of native extracellular matrix has been used for the directive regeneration
of a variety of tissues in vitro and in vivo, including bone [182–184], cartilage
[179,185,186] and myocardium [187].

Similarly, our laboratory has shown that BM-MSC-seeded pullulan-collagen hydrogels not
only improve BM-MSC survival and engraftment within the high-oxidative-stress
environment of ischemic murine skin wounds, but also create a ‘stem cell niche’ that
enhances cytokine secretion (VEGF, MCP-1, FGF-1 and MMPs), improves angiogenesis
and accelerates wound healing [188,189].

Composite tissue & organ regeneration: an extension of stem cell therapies
The regeneration of composite tissues and organs is an obvious extension of stem cell-based
therapies, but the complex cellularity and growth volume limitations in the absence of a
functional perfusion system are significant barriers to the large-scale fabrication of
engineered tissue. While advances in bioscaffold design have shown that spatial variance of
mechanical and biochemical properties can be used to stimulate multilayer complex tissue
from a single stem cell population [179,185], and the use of multiple stem cell populations
can synergistically promote vascularization within engineered tissue [190,191], these
constructs may still require complex vascular ingrowth when placed in vivo.
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Explantable microvascular beds (EMBs) bypass these limitations by creating functional
microcirculatory systems through the isolation and ex vivo manipulation of host tissue
[192]. EMBs can be seeded with cells and subsequently re-planted with immediate
circulatory integrity (direct vessel-to-vessel connections) [192]. Our laboratory has shown
that EMBs can be maintained ex vivo for up to 24 h using a bioreactor, and intravascularly
seeded with BM-MSCs, which remain viable following in vivo reimplantation [193]. Further
illustrating the potential of this approach, ongoing work in our laboratory has found that
EMBs seeded with BM-MSCs are also capable of directed differentiation in vivo [Gurtner
GC, Unpublished Data].

Conclusion & future perspective
The evidence for endogenous bone marrow-derived stem cell contribution following injury
varies by population, yet all four cell types discussed in this article have shown beneficial
effects when applied to preclinical injury models. Our mechanistic understanding of this
cellular behavior is rapidly evolving, and despite early clinical setbacks using cell-based
therapies, advances in tissue engineering and cell manipulation have already begun to
leverage our knowledge of stem cell–microenvironment interactions to enhance the
regenerative potential of these cells following injury, while simultaneously laying the
groundwork for neo-organ fabrication.

Looking towards the future, we expect that further characterization of bone marrow cellular
mobilization, recruitment and function will continue to provide valuable insights for
unlocking our innate regenerative potential, while providing additional targets for
therapeutic modulation. Based on the synergism observed with the parallel use of multiple
experimental manipulations [137,145–147,174], we believe that a combination of strategies,
such as enhancing cell purity, intrinsic function and external microenvironment, will be the
key to maximizing therapeutic effect and producing a clinically relevant therapy.
Additionally, we anticipate that insights into the therapeutic action of exogenously delivered
bone marrow-derived cells will be pertinent to more readily available sources of multipotent
cells, such as those derived from adult adipose tissue [194–196]. The use of these alternative
cell sources may accelerate the clinical translation of mesenchymal stem cell therapies by
overcoming the limitation of obtaining adequate cell numbers without the need for in vitro
expansion.

In summary, we believe that optimization of the fundamental mechanisms described herein
has the potential to significantly increase the regenerative capacity of adult tissue following
injury. As such, we expect to see the emergence of multiple clinically relevant cell-based
therapies in the upcoming years, as the full potential of these cells is slowly realized.
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Executive summary

• Tissue repair and regeneration involve resident cell proliferation, as well as the
selective recruitment of stem and progenitor cell populations originating from
the bone marrow:

– Bone marrow stem and progenitor cell populations that are active
following injury include hematopoietic and mesenchymal stem cells,
endothelial progenitor cells and very small embryonic-like cells.

– Recruited stem/progenitor cells are thought to promote tissue
regeneration through some combination of cytokine release and direct
cellular differentiation.

• Bone marrow stem and progenitor cells are mobilized and recruited to injured
tissue through complex signaling and cytokine cascades, including the important
SDF-1/CXCR4 cytokine-receptor axis:

– Nitric oxide, Jagged/Notch and MCP-1/CCR2 interactions, as well as
various growth factors, are also likely to contribute to this process.

– A variety of molecules have been implicated in bone marrow stem cell
vascular rolling and adhesion, endothelial transmigration and
movement within the extracellular space, enabling homed cells to
congregate within sites of injury.

• Cell-based therapies have shown the ability to augment tissue regeneration in
animal models by increasing stem/progenitor cell involvement within the injury
environment:

– Clinical trials using stem cell therapies have shown mixed efficacy,
partially due to poor cellular engraftment within the harsh injury
environment.

• Preclinical techniques augmenting endogenous or exogenous bone marrow stem
cell function, survival and homing have been developed to increase stem cell
engraftment and the overall regenerative effects of stem cell therapies:

– The synergism observed with combined therapies is particularly
applicable to translational applications.

• Composite tissue and organ regeneration are natural extensions of stem cell
therapies, with stem cell-seeded explantable microvascular beds showing
promise for large-scale tissue engineering.

• Ongoing research into the actions of endogenous stem cells should continue to
provide clues for the improvement of stem cell-based therapies.
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Figure 1. Proposed functions of recruited bone marrow-derived cellular subpopulations
following injury
EPCs are thought to contribute mainly to neovascularization, while VSELs, MSCs and
HSCs variably support neovascularization and tissue regeneration through paracrine effects
on native cell survival and RPC proliferation, as well as infrequent direct cellular
differentiation.
EPC: Endothelial progenitor cell; HSC: Hematopoietic stem cell; MSC: Mesenchymal stem
cell; RPC: Resident progenitor cell; VSEL: Very small embryonic-like cell.
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Figure 2. Stem cell enhancement strategies following injury
Clinical trials on stem cell therapies have shown mixed efficacy, but experimental
approaches targeting the endogenous cellular response (A) or enhancement of cell delivery
(B) can improve stem cell function, survival and/or homing, leading to improved outcomes
following injury.
EPO: Erythropoietin.
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Table 1

Preclinical methods for enhancing endogenous bone marrow stem and progenitor cell response after injury.

Molecules Cell type Injured tissue Ref.

Increased cell mobilization

Modulation of SDF-1/CXCR4 axis

G-CSF MSC, HSC, EPC, BMC Brain, liver, artery [5,108,129,130]

Plerixafor (CXCR4 antagonist) HSC Liver [131]

Cilostazol (PDE-3 inhibitor) EPC Artery [132]

Modulation of PI3K/Akt pathway

Statins EPC Heart, kidney [133,197]

EPO EPC Artery [134]

Pioglitazone (PPARγ agonist) EPC Subcutaneous implant [135]

Increased cell homing

Local gene therapy

HIF-1α BMC Heart [140]

SDF-1 EPC, HSC Heart, skeletal muscle [84,95]

IGF-1 c-kit+/CD34+ cells Heart [141]

Local injection

SDF-1 BMC Lung, heart [137,138]

E-selectin EPC Skeletal muscle [136]

Slow release biologics

SDF-1 MSC, sca1+/c-kit+ cells Heart, in vitro [139,142,143]

Combined mobilization and homing

G-CSF with local SDF-1 BMC, c-kit+ cells Lung, heart [137,147]

Substance P (mobilization) with local SDF-1 CD29+/CD45− cells, c-kit+ cells Skeletal muscle implant [145]

G-CSF with CXCR4 antagonist with local SDF-1 BMC Brain [146]

BMC: Bone marrow-derived cell; EPC: Endothelial progenitor cell; EPO: Erythropoietin; HSC: Hematopoietic stem cell; MSC: Mesenchymal
stem cell; PDE-3: Phosphodiesterase-3.
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Table 2

Preclinical methods for enhancing exogenous bone marrow stem and progenitor cell engraftment and function
following injury.

Molecules/methods Cell type Injured tissue Ref.

Increased cell homing/engraftment

Enhancement of injured tissue homing/engraftment signal

SDF-1 local injection EPC Skeletal muscle [148]

SDF-1 local gene therapy EPC Skeletal muscle [149]

U/S to upregulate local SDF-1, VEGF, ICAM-1, VCAM-1 MSC, BM-MNC Heart [198–201]

Low-energy shockwave to upregulate SDF-1 EPC Skeletal muscle [150]

Systemic coadministration of growth factors/cytokines

G-CSF BM-MNC Brain, liver [202,203]

HGF BM-MNC Liver [204]

SDF-1 BM-MNC Liver [205]

Ex vivo modulation of cell function: gene therapies

Enhancement of cell homing/function

eNOS, CXCR4 MSC, EPC Artery, heart [157,158,166–169,206]

Enhancement of cell survival

TERT EPC Skeletal muscle [207]

HSP-70, Bcl-2, Akt, GSK, ILK MSC Heart [152–156]

Enhancement of cell survival/paracrine signaling

HGF EPC Artery [164]

VEGF EPC Skeletal muscle [163]

SDF-1 MSC Heart [165]

IGF-1 EPC Heart [208]

Ex vivo modulation of cell function: small molecules

Enhancement of cell survival/function

AVE9488 (eNOS enhancer) EPC Heart [159]

PPARγ agonist MSC Heart [209]

Inhibition of apoptosis

p38 kinase inhibitor EPC Skeletal muscle [210]

Activation of selectins/integrins

Ephrin-B2-Fc, activating β2-integrin antibody EPC Skeletal muscle [170,171]

Enhancement of paracrine signaling

TGF-α, estradiol MSC Heart [172,173]

Enhancement of differentiation capacity

Angiotensin receptor blocker MSC Heart [211]

Altered cellular microenvironment

Bioscaffolds MSC Heart, skin, bone [180–184,187–189]

Combined approaches
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Molecules/methods Cell type Injured tissue Ref.

Ex vivo VEGF gene therapy with local SDF-1 delivery EPC Heart [174]

Bioscaffold with SDF-1 pretreatment EPC Heart [212]

Bioscaffold with IL-10 gene therapy MSC Heart [213]

BM-MNC: Bone marrow-derived mononuclear cell; EPC: Endothelial progenitor cell; Ephrin-B2-Fc: Ligand for erythropoietin-producing human
hepatocellular carcinoma receptor B4; MSC: Mesenchymal stem cell; U/S: Ultrasound.
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